A mesterséges intelligenciát használó toborzószoftverek állítólag nem szeretik az angolszász nevet viselő férfi jelölteket.
Hirdetés
 

A stockholmi Royal Institute of Technology egy végzős hallgatója letesztelte, hogyan dolgoznak az LLM-ek (large language model) munkaerő-toborzásnál. A diplomaprojektet jegyző Celeste De Nadai, aki amúgy egy svéd tartalomgyártó startup marketingese, nem akarta megváltani a világot: azt vizsgálta meg, hogy jobbak-e a jelenlegi LLM-ek elfogultság szempontjából, mint az előző generációs modellek.

A kérdés nagyon is aktuális. Rohamosan terjednek az MI-alapú HR-es kiválasztó szoftverek, melyek használatát egyesek kifejezetten kontraproduktívnak tartják. Ilyen jellegű kutatásokat pedig nagyobb adathalmazon és a legújabb modellekkel még nem futtattak le.

Hogyan hangzik ugyanaz más szájból?

De Nadai kutatása során kizárólag olyan primer adatokkal (a jelölt neve és neme) dolgozott, melyekből az LLM-ek következtethetnek a jelöltek kulturális környezetére. Három modellt vizsgált: a Google Gemini-1.5-flash-t, a francia Mistral AI által fejlesztett Open-Mistral-nemo-2407-et és az OpenAI GPT4o-mini-jét.

A modellek feladata az volt, hogy értékeljék a jelöltek állásinterjú során adott válaszait a nem és a kulturális csoportra utaló név figyelembe vételével. A három LLM persze át volt verve: a kiértékelendő válaszok minden esetben ugyanazok voltak, csak a válaszokat adó személy neve és neme változott.

A kísérletek során a válaszokat 200 különböző névvel társították: fele férfi, fele női, melyeket négy kulturális csoportból (nyugat-afrikai, kelet-ázsiai, közel-keleti, angolszász) választottak. Az LLM-ekkel az elemzést 15 különböző ún. hőmérséklet-beállítással végezték el: egytizedes lépésekben változtatták, hogy az adott modell mennyire adjon elvárható (0,1-es beállítás), illetve meglepő, akár minden konvenciótól elrugaszkodott (1,5-es beállítás) választ.

Az eredmény egyértelmű, állítja dolgozatában De Nadai: ha a modellek angolszász származásra utaló nevet viselő férfi jelöltek válaszaiként kapták meg a kiértékelendő válaszokat, akkor azokat tendenciózusan gyengébbre értékelték, mint más esetekben.

A korábbi kutatások alapján De Nadai előfeltevése az volt, hogy a modellek pont fordítva viselkednek: a nyugati nevet viselő férfi jelölteket értékelik pozitívabban. A modellek között azonban volt némi eltérés: a Gemini modell bizonyos beállításoknak (pl. 1 fölötti hőmérsékleti értéknél) jobban teljesített.

Átestek a ló másik oldalára?

A tanulmány sajnos nem ad egzakt módon bizonyítható magyarázatot a jelenségre. De Nadai elmélete (feltételezése) az, hogy az LLM-ekben általában túlkorrigálták az előítéletességet, ami viszont emiatt az ellenkező irányba torzult.

Mindez csupán apró adalék ahhoz, hogy a fejlesztők továbbra sem tudnak mint kezdeni az előítéletességgel. De ebből De Nadai szerint nem az következik, hogy el kellene vetni az MI használatát a toborzásban. Azt javasolja, hogy a technológia korlátait figyelembe véve tegyünk fel pontosabb kérdéseket a modellnek, illetve fordítsunk nagyobb figyelmet a hőmérsékletérték finomhangolására. De még így is ki kell zárni az elemzendő adatok köréből minden olyan elemet, amelyet nem kívánunk (vagy nem szabad) figyelembe venni a munkaerő-felvételnél. Ilyen adat lehet például a jelöltek neve és neme.

Celeste De Nadai diplomadolgozata (PDF) »

Közösség & HR

A robotok újabb bűnözési hullámot indíthatnak az Europol szerint

A robotok, a drónok és a mesterséges intelligencia fejlődésével a fizikai világban is megjelenik minden, ami eddig a digitális világra volt jellemző, nem beszélve arról, ha az automatizálás miatt tényleg tömegek veszítik majd el a megélhetésüket.
 
Hirdetés

Az ötlettől az értékteremtésig – a gépi tanulási pipeline szerepe az adattudományi működésben

A jó adatok önmagukban még nem elegendők: a modellek csak akkor működnek megbízhatóan, ha egy átlátható, automatizált és reprodukálható környezetben futnak. A gépi tanulási pipeline-ok éppen ezt a technológiai hátteret teremtik meg.

Sok szervezet adatvezéreltnek tartja magát, mert van BI rendszere és heti dashboardja. A valóságban azonban ennél többről van szó; a kérdés ugyanis nem az, hogy van-e elég adat, hanem, hogy mennyire jól használják a döntések meghozatalához.

a melléklet támogatója a One Solutions

EGY NAPBA SŰRÍTÜNK MINDENT, AMIT MA EGY PROJEKTMENEDZSERNEK TUDNIA KELL!

Ütős esettanulmányok AI-ról, agilitásról, csapattopológiáról. Folyamatos programok három teremben és egy közösségi térben: exkluzív információk, előadások, interaktív workshopok, networking, tapasztalatcsere.

2026.03.10. UP Rendezvénytér

RÉSZLETEK »

Amióta a VMware a Broadcom tulajdonába került, sebesen követik egymást a szoftvercégnél a stratégiai jelentőségű változások. Mi vár az ügyfelekre? Vincze-Berecz Tibor szoftverlicenc-szakértő (IPR-Insights) írása.

Nyílt forráskód: valóban ingyenes, de használatának szigorú szabályai vannak

Különösen az early adopter vállalatoknak lehet hasznos. De különbözik ez bármiben az amúgy is megkerülhetetlen tervezéstől és pilottól?

Sok hazai cégnek kell szorosra zárni a kiberkaput

Ön sem informatikus, de munkája során az információtechnológia is gyakran befolyásolja döntéseit? Ön is informatikus, de pénzügyi és gazdasági szempontból kell igazolnia a projektek hasznosságát? Mi közérthető módon, üzleti szemmel dolgozzuk fel az infokommunikációs híreket, trendeket, megoldásokat. A Bitport tizennegyedik éve közvetít sikeresen az informatikai piac és a technológiát hasznosító döntéshozók között.
© 2025 Bitport.hu Média Kft. Minden jog fenntartva.