Esetenként a lehetetlennel határos dolog véglegesen törölni belőlük egy-egy meghatározott adatot, amire pedig gyakran lesz majd szükség például a GDPR-megfelelőség miatt.

A mesterséges intelligenciával és a gépi tanuló algoritmusokkal kapcsolatban egy érdekes, bár keveset emlegetett kérdés az adatok törlésének lehetősége. Ez praktikusan azt jelenti, hogy nem könnyű eltávolítani a rendszerek betanításához használt adatkészletek egyik-másik jól meghatározott elemét, és erre sokszor csak az jelent megoldást, hogy a tanítást újra elkezdik az alapoktól, ezúttal már a frissített adatkészleteket alkalmazva. A probléma olyan esetekben különösen érdekes, mint például az európai GDPR gyakorlati alkalmazása, amelynek értelmében a magánszemélyek töröltethetik személyes adataikat a céges adatbázisokból.

Ez a gépi tanuló rendszerek esetében olyannyira nem egyszerű, hogy egy 2017-ben kiadott, Humans forget, machines remember (az emberek felejtenek, a gépek emlékeznek) című egyetemi kutatási anyagban egyenesen lehetetlennek tartották. Az ilyen modellek komplexitása egy fekete dobozhoz teszi hasonlatossá azokat, amelyben nem teljesen világos az egyes adatpontok vagy -csoportok tényleges szerepe. A rendszerek ismételt betanítása viszont sok időbe és sok pénzbe kerül, ami nyilvánvalóan nem áll rendelkezésre minden egyes felmerülő módosításhoz.

Az első lépést mindenesetre megtették

Erre keres választ egy másik, a Stanford University PhD-hallgatója által vezetett csoport, és ha kielégítő megoldást nem is, bizonyos eredményeket már elértek a probléma vizsgálata során. A múlt héten közzétett Making AI Forget You (rávenni az MI-t, hogy elfelejtsen) című publikáció bemutatja, hogyan sikerült "igazolhatóan törléshatékony algoritmusokat" létrehozni k-közép klaszterezést (k-means clustering) alkalmazó modellekkel, és ez hogyan volt alkalmazható összesen hat különböző adatkészleten.

A módszer lényege a törlés hatásainak megbecsülése a már betanított modelleken, ami bizonyos esetekben a rendszerek hatékonyságának csökkenésével jár együtt. Ez egyrészt annak vizsgálatát jelenti, hogy egy adatpont eltávolítása jár-e bármiféle hatással a teljes gépi tanuló modellre nézve – bizonyos beállítások mellett nem jár, így ez az ellenőrzés nagyon eredményesen elvégezhető. Másrészt megvizsgálják azt is, hogy az adatpont törlése hogyan befolyásolja a rendszer lokális komponenseit, ez utóbbi függvényében pedig lokális frissítések hajthatók végre rajta.

A közzétett anyag szerint a k-közép klaszterezésre alapuló modellekkel, a megfelelő körülmények között, a módszer működőképes (az eljárás sokkal részletesebb és szabatosabb leírása itt olvasható), mivel ezekben az esetekben az adatok sokkal egyszerűbben szeparálhatók. A modern, determinisztikus mélytanuló modellekre viszont továbbra is igaz, hogy hihetetlenül nehéz feladat egyes adatokat törölni belőlük – bár a kutatók hangsúlyozzák, hogy szerintük ez sem lehetetlen dolog. Bár elismerik, hogy jelenleg nem rendelkeznek a megfelelő eszközökkel, reményeik szerint akár hónapokon belül előállhatnak majd az első megoldásokkal.

Cloud & big data

First person shooter videókat gyárt a londoni rendőrség a Facebooknak

Cserébe a londoni rendőrség testkamerákat kap a cégtől. A Facebooknak jó oka van erre a furcsa megállapodásra.
 
EZ A HELYZET SIÓFOKON

SAP NOW Hungary:
szerszámkészlet az ügyfelek lenyűgözéséhez

Az SAP kétnapos rendezvénye az idén is követhető a Bitporton!

TOVÁBB A KÖZVETÍTÉSRE >

Ömlik a pénz a digitalizációval foglalkozó startupokba, de a rossz beidegződések még mindig lassítják az átalakulást.

a melléklet támogatója az Aruba Cloud

Hirdetés

Nagyvállalati mesterséges intelligencia (MI) megoldások a Lenovótól

Elkezdődött a mesterséges intelligencia hajtotta gazdasági átalakulás. Az összetett technológia könnyű használatba vételét, rugalmas bővítését ígérik a Lenovo adatközponti megoldásai.

A VISZ éves INFOHajó rendezvényén az agilitás nagyvállalati alkalmazhatósága és tanulhatósága volt az egyik kerekasztal témája. Az ott elhangzottakat gondolta tovább Both András (Idomsoft), a kerekasztal egyik résztvevője.

Ez a nyolc technológia alakítja át a gyártást

a Bitport
a Vezető Informatikusok Szövetségének
médiapartnere

Az Oracle átáll a féléves verzió-életciklusra, és megszünteti az ingyenes támogatást üzleti felhasználóknak. Mire kell felkészülni? Dr. Hegedüs Tamás licencelési tanácsadó (IPR-Insights Hungary) írása.
Ön sem informatikus, de munkája során az információtechnológia is gyakran befolyásolja döntéseit? Ön is informatikus, de pénzügyi és gazdasági szempontból kell igazolnia a projektek hasznosságát? Mi közérthetően, üzleti szemmel dolgozzuk fel az infokommunikációs híreket, trendeket, megoldásokat. A Bitport kilencedik éve közvetít sikeresen az informatikai piac és a technológiát hasznosító döntéshozók között.
© 2010-2019 Bitport.hu Média Kft. Minden jog fenntartva.