Egy friss tanulmány szerint nem igaz, hogy a mesterséges intelligenciára épülő toborzási szoftverek növelnék az újonnan felvett munkaerő sokféleségét.

A munkehelyi felétel során használt, MI-alapú szoftverek mellett általában azzal érvelnek, hogy az automatizálásból fakadó hatékonyságnövelés mellett kiküszöbölhetik a folyamatból az emberi elfogultságot, és segíthetnek megvalósítani a sokszínűséggel, egyenlőséggel vagy befogadással kapcsolatos célokat. Mivel ezek a rendszerek a testbeszéd elemzésére és a jelöltek érzelmi intelligenciájának előrejelzésére szolgáló gépi tanuló algoritmusokat is alkalmaznak, viszont elvileg nem veszik figyelembe a jelöltek nemét vagy származását, igazságos megoldásnak tűnnek a dolgozók értékelésére, mert kézenfekvő módon több embert nyilvánítanak alkalmasnak a korábban alulreprezentált csoportokból.

Legalábbis ez a szállítók ígérete, ami a Cambridge-i Egyetem kutatóinak a héten közzétett tanulmánya szerint tényleg csak ígéret, maguk a szoftverek viszont alig képviselnek többet az "automatizált áltudománynál". Az általuk reprodukált kereskedelmi modellen keresztül azt vizsgálták, hogy az MI hogyan jósolja meg az egyes emberek személyiségét a róluk készült felvételek alapján, illetve hogyan azonosítja a főbb személyiségjegyeket. Ennek során pedig arra jutottak, hogy a szoftveres előrejelzéseket befolyásolják az emberek arckifejezésében, megvilágításában vagy hátterében bekövetkező változások, sőt még a ruházatuk is, aminek nyilvánvalóan semmi köze az álláskereső képességeihez.

A toborzás a saját farkába harap

A mesterséges intelligencia toborzási célokra való alkalmazása ebben a formában tehát hibás, ha még a fény, a telítettség és a kontraszt módosításai is befolyásolhatják a gépi intelligencia által osztogatott pontszámokat. Az egyik kutató a The Registernek nyilatkozva elmondta, hogy eredményeiket korábbi tanulmányok is alátámasztják, amelyek kimutatták például, hogy a videointerjúk során egy fejkendő vagy egy szemüveg, esetleg a háttérben lévő könyvespolc hogyan alakítja az értékelést. A gépi tanuló rendszerek ugyanis a korábbi sikeres jelöltekhez kapcsolódó tulajdonságokat keresik, ezért nem hogy a sokszínűséget nem támogatják, de éppenséggel a hasonló megjelenésű embereket keresik.

A szakember szerint a gépi tanuló modelleket prediktívnek tekintjük, de azokat szükségszerűen a múltbeli adatok alapján képezik ki, így döntéseik is a múltban hozott döntéseket iterációi, aminek nem sok köze van a jövőhöz. Amikor az ilyen eszközök a már meglévő adatkészletek feldolgozásával tanulnak, akkor létrejön egy "visszacsatolási hurok" aközött, hogy a munkáltatók milyen jelentkezőket tartanak ideális munkavállalónak, és aközött, hogy az automatizált toborzási eszközökmilyen kritériumokat használnak a megfelelő jelöltek kiválasztásához. Érdemes megjegyezni, hogy az átláthatatlanság a pályázók között is bizalmatlanságot szül, és csak harmad részük szerint zárhatók ki vagy mérsékelhetők vele a származási, életkori vagy nemi előítéletek.

Közösség & HR

Minden bitcoinos tranzakció felszippanthat egy úszómedencére való vizet

A kriptovalutához kapcsolódó vízfelhasználás egy friss tanulmány szerint 166 százalékkal emelkedett 2020 és 2021 között, az átmeneti visszaesést követően pedig 2023-ban is új rekordot dönt majd.
 
Ez a kkv-k problémája világszerte. A megoldásszállítók pedig rendszer a széttagoltságra, a sok egyedi igényre, és az ebből eredő magas fejlesztési és támogatási költségekre panaszkodnak.

a melléklet támogatója a Yettel

Minden vállalatnak számolnia kell az életciklusuk végéhez érő technológiák licencelési keresztkockázataival. Rogányi Dániel és Vincze-Berecz Tibor (IPR-Insights) írása.

Miért ne becsüljük le a kisbetűs jelszavakat? 1. rész

Miért ne becsüljük le a kisbetűs jelszavakat? 2. rész

Miért ne becsüljük le a kisbetűs jelszavakat? 3. rész

A felmérésekből egyre inkább kiderül, hogy az alkalmazottak megtartása vagy távozása sokszor azon múlik, amit a szervezetük nem csinál, nem pedig azon, amiben egymásra licitál a többi munkáltatóval.

Ezért fontos számszerűsíteni a biztonsági kockázatokat

Ön sem informatikus, de munkája során az információtechnológia is gyakran befolyásolja döntéseit? Ön is informatikus, de pénzügyi és gazdasági szempontból kell igazolnia a projektek hasznosságát? Mi közérthető módon, üzleti szemmel dolgozzuk fel az infokommunikációs híreket, trendeket, megoldásokat. A Bitport tizennegyedik éve közvetít sikeresen az informatikai piac és a technológiát hasznosító döntéshozók között.
© 2010-2023 Bitport.hu Média Kft. Minden jog fenntartva.