Amíg a hatékonyságuk az új információval folyamatosan csökken, és rendszeresen az alapoktól kezdve kell újra kiképezni őket, addig borzasztó költséges lesz a használatuk – derül ki egy friss kutatásból.

Alapvető probléma van a jelenlegi mesterségesintelligencia-modellek képességeivel az új fajta információ elsajátításában, mégpedig az, hogy nem igazán képesek ilyesmire – állítják a kanadai Alberta Egyetem tudósai a Nature oldalán nemrég közzétett tanulmányukban. Röviden arról van szó, hogy a nagy nyelvi modellek (LLM), melyek felépítése az adathalmazokban talált mintákra alapul, nem teljesítenek jól a "folyamatos tanulás" állapotában – vagyis mindazokban a környezetekben, ahol folyamatosan új fogalmakat kell bevezetni a képzésükbe.

Ebből következik, hogy a működő mélytanuló rendszereket jellemzően az alapoktól újra kell képezni, ha valami teljesen új dologra akarják őket megtanítani, máskülönben gondot okozhat a korábbi adatkészleteken finomhangolt feldolgozóegységek (mesterséges neuronok) frissítése. A standard tanulási módszerek fokozatosan elvesztik plaszticitásukat, mivel nem biztosított a kevésbé használt egységek folyamatos és véletlenszerű újrainicializálása: a kutatók szerint ezt egy olyan emberi agyhoz lehetne hasonlítani, amelyben a neuronok 90 százaléka halott.

Mit ér az MI, ha túl drága

Mindez azt jelenti, hogy a legtöbb MI-modellt mindig át kell képezni, ha újfajta adatok válnak elérhetővé, ami rendkívül költséges lehet – különösen akkor, ha a nagy nyelvi modellekről van szó, a szóban forgó új adatkészletek pedig megfelelnek a publikus interneten elérhető tartalom jelentős részének. A tudósok megvizsgálták, hogy a legnépszerűbb MI-modellek a megerősítő tanulás (reinforcement learning) módszereivel adaptálhatók-e a folyamatos tanuláshoz, de arra jutottak, hogy a mesterséges neuronok mindenképpen tömegével süllyednek nullás értékre.

A megoldást keresve azonban kifejlesztettek egy olyan algoritmust is, ami véletlenszerűen kapcsol be egyes neuronokat a képzési kör után, és azt tapasztalták, hogy ezzel mérsékelhető a rendszer teljesítményének visszaesése. Ehhez azonban hozzáteszik, hogy az eljárást sokkal nagyobb rendszereken kell majd tesztelni, hogy tényleg megbizonyosodjanak a hatékonyságáról. A folyamatos tanulás problémájának megoldását azonban milliárd dolláros kérdésnek nevezik, mivel csak így lehetne csökkenteni a modellek betanítási költségeit.

Arról, hogy utóbbiak miatt még mindig csak a legnagyobb vállalatok engedhetik meg maguknak a kísérletezést a mesterséges intelligencia lehetőségeinek kiaknázására, ebben a cikkünkben írtunk részletesebben. Arra pedig, hogy az óriási befektetések megtérülése mennyire kétséges, szinte naponta kapjuk az újabb és újabb példákat.

Piaci hírek

Tervezni kezdik az óriási, űrhajósok generációit szállító hajókat

A legközelebbi exobolygók is csak több száz vagy ezer év alatt lesznek megközelíthetők, ami különféle kérdések egész sorát veti majd fel az utazás fizikai megvalósításán túl is.
 
Ezt már akkor sokan állították, amikor a Watson vagy a DeepMind még legfeljebb érdekes játék volt, mert jó volt kvízben, sakkban vagy góban.
Amióta a VMware a Broadcom tulajdonába került, sebesen követik egymást a szoftvercégnél a stratégiai jelentőségű változások. Mi vár az ügyfelekre? Vincze-Berecz Tibor szoftverlicenc-szakértő (IPR-Insights) írása.

Nyílt forráskód: valóban ingyenes, de használatának szigorú szabályai vannak

Különösen az early adopter vállalatoknak lehet hasznos. De különbözik ez bármiben az amúgy is megkerülhetetlen tervezéstől és pilottól?

Sok hazai cégnek kell szorosra zárni a kiberkaput

Ön sem informatikus, de munkája során az információtechnológia is gyakran befolyásolja döntéseit? Ön is informatikus, de pénzügyi és gazdasági szempontból kell igazolnia a projektek hasznosságát? Mi közérthető módon, üzleti szemmel dolgozzuk fel az infokommunikációs híreket, trendeket, megoldásokat. A Bitport tizennegyedik éve közvetít sikeresen az informatikai piac és a technológiát hasznosító döntéshozók között.
© 2010-2024 Bitport.hu Média Kft. Minden jog fenntartva.