Az univerzum működésének mélyebb megértéséhez alapvető fontosságú lenne minél több csillagászati rendszer katalogizálása, ami emberi erőforrással reménytelen feladat. Szerencsénkre itt vannak a tanulásra képes algoritmusok.
Hirdetés
 

Máris hatalmas segítséget nyújtott egy neurális hálózat a csillagászoknak azzal, hogy 27 millió galaxist azonosított automatizált munkájának köszönhetően. A tudósok azonban itt nem állnak meg, és további 600 millió rendszerről remélnek bővebb információcsomagot kapni.

Mint égen a csillag

Többek között a sötét energia természetének jobb megértését segítheti az a még 2013-ban indult projekt, amely az egyik legambíciózusabb terv a világegyetem feltérképezésére. A Dark Energy Survey (DES) a bolygónkról megfigyelhető univerzum nagyjából nyolcadát igyekszik szuperfelbontású felvételek elemzésével feldolgozható, kutatható adattengerré változtatni. A probléma viszont adott: a vizsgálandó területen található galaxisok száma... csillagászati.

Amennyiben meg tudnánk határozni ezeknek a megfigyelt rendszereknek a pontos korát és elhelyezkedését, az jelentősen javítaná az univerzumunk működését és fejlődését feltárni igyekvő tudományos munkát. Százmilliószám rendszerezni galaxisokat viszont lehetetlen feladatnak bizonyul emberi munkával, éppen ezért jelenthet óriási minőségi ugrást a témában a mesterséges intelligencia (MI) képességeinek kamatoztatása.

Rakétasebességre kapcsolnak

Egy márciusban publikált tanulmány, amely mögött összesen több mint félszáz tudományos intézet munkatársai állnak, bővebb betekintést enged abba, miként segíti az algoritmus a DES-t. A feladathoz a gépi vizuális felismerésnél gyakran segítségül hívott konvolúciós neurális hálózatot (CNN) vetettek be, amelynek a Chile-ben felállított, 4 méter tükörátmérőjű Victor M. Blanco teleszkóp által rögzített képeket kellett analizálnia.

Az első körben az algoritmus alapozó tréninget kapott. Ennek keretében több tízezer valós és mesterségesen generált galaxis osztályozására tanították meg azok vélhető kora szerint. Majd következett annak a problémának a feloldása, hogy egy galaxis teljesen más rajzolatú attól függően, hogy honnan nézzük. A spirális elhelyezkedésű Tejútrendszerünk ismert alakzata például "oldalról" csak egy csíknak látszik. Összességében a csapat algoritmusa 97 százalékos hatékonyságot ért el, miközben a hamis negatív és hamis pozitív értékelések aránya mindössze 3-4 százalék körül mozgott a különböző teszek során.

A legnagyobb problémát a rendkívül halvány fényű, alig kivehető égi objektumok beazonosítása jelenti. Ezt úgy oldották meg a szakemberek, hogy a tanulókészlet elemeit mesterségesen elhalványították, ami tulajdonképpen a galaxis térbeli távolításának felel meg. Így viszont a neurális hálózat már képessé vált a korábbinál 50-szer több égitest katalogizálására is.

A folyamatos finomhangolásnak hála a felmérés következő szakaszában érkező felvételek átvizsgálásával további 600 millió galaxist remélnek jobban megismerni a csillagászok. Ennek a munkának köszönhetően olyan kérdésekre lehet majd válaszokat keresni, mint hogy a sötét energia felgyorsítja-e az univerzum tágulását, vagy hogy a galaxisok hogyan fejlődnek az idők során.

Cloud & big data

Mustafa Suleyman másfél évet ad a fehér gallérosoknak az MI-vel szemben

A Microsoft MI-főnöke szerint egy-másfél éven belül a szellemi munkát végzők feladatait is átveszi a mesterséges intelligencia.
 
Hirdetés

Produktivitás mint stratégiai előny: mit csinálnak másként a sikeres cégek?

A META-INF által szervezett Productivity Day 2026 idén a mesterséges intelligencia és a vállalati produktivitás kapcsolatát helyezi fókuszba. Az esemény középpontjában a META-INF nagyszabású produktivitási kutatásának bemutatása áll, amely átfogó képet nyújt a magyar vállalatok hatékonyságáról és működési kihívásairól.

Vezetői példamutatás és megfelelő oktatás, vállalatikultúra-váltás nélkül gyakorlatilag lehetetlen adatvezérelt működést bevezetni. Cikkünk nemcsak a buktatókról, hanem azok elkerülésének módjairól is szól.

EGY NAPBA SŰRÍTÜNK MINDENT, AMIT MA EGY PROJEKTMENEDZSERNEK TUDNIA KELL!

Ütős esettanulmányok AI-ról, agilitásról, csapattopológiáról. Folyamatos programok három teremben és egy közösségi térben: exkluzív információk, előadások, interaktív workshopok, networking, tapasztalatcsere.

2026.03.10. UP Rendezvénytér

RÉSZLETEK »

A PMI Budapest, Magyar Tagozat májusban rendezi meg az Art of Projects szakmai konferenciát. A rendezvény kapcsán rövid írásokban foglalkozunk a projektmenedzsment szakma újdonságaival. Az első téma: mit gondolunk ma a projekttervezésről?

Régen minden jobb volt? A VMware licencelési változásai

A Corvinus Egyetem és a Complexity Science Hub kutatói megmérték: a Python kódok közel harmadát ma már mesterséges intelligencia írja, és ebből a szenior fejlesztők profitálnak.

Rengeteg ország áll át helyi MI-platformra

Ön sem informatikus, de munkája során az információtechnológia is gyakran befolyásolja döntéseit? Ön is informatikus, de pénzügyi és gazdasági szempontból kell igazolnia a projektek hasznosságát? Mi közérthető módon, üzleti szemmel dolgozzuk fel az infokommunikációs híreket, trendeket, megoldásokat. A Bitport tizennegyedik éve közvetít sikeresen az informatikai piac és a technológiát hasznosító döntéshozók között.
© 2010-2026 Bitport.hu Média Kft. Minden jog fenntartva.