A felelős MI (responsible AI) kifejezés arra a koncepcióra utal, amikor a mesterséges intelligenciát eleve azzal a szándékkal tervezik, fejlesztik és telepítik, hogy segítse a vállalkozások és alkalmazottaik munkáját, miközben az ügyfelekre és a társadalomra gyakorolt hatását a méltányosság és a jogszerűség jellemzi. Ez egyrészt hozzájárul a szükséges bizalom felépítéséhez, másrészt elengedhetetlennek tartják az ilyen megoldások megbízható felskálázásához is. Az etikai kockázatok jelentősége az MI-technológiák fejlődésével párhuzamosan növekszik, az Appen idei State of AI and Machine Learning jelentéséből pedig kiderül, hogy a nyugati technológiai vezetők túlnyomó része már ezt tartja az új mesterségesintelligencia-projektek alapjának.
A gépi intelligencia betanításához szükséges adatkészletek előállításával és feljavításával foglalkozó vállalat több mint 500 amerikai, brit, ír és német döntéshozó válaszait dolgozta fel idén júniusban. Ezek most 93 százalékban szóltak a felelős MI fundamentális szerepéről, de az is kiderült, hogy sokan próbálnak ilyesmit építeni nem megfelelő minőségű adatkészletekkel, amit jelentős akadálynak tartanak a céljaik elérésében. A válaszadóknak ezúttal már 51 százaléka értett egyet azzal, hogy az adatok pontossága kulcsfontosságú az általuk képviselt felhasználási esetekben, 42 százalékuk szerint azonban nagy kihívást jelent a data sourcing, vagyis a belső és külső forrásból származó adatok kinyerése és integrációja.
Keresik a megfelelő "adatpartnert"
A mesterséges intelligencia életciklusán belül ezek szerint erre irányul az erőfeszítések legnagyobb része, amit hihetetlenül nagy vállalkozás egyedül kezelni. A felmérésben részt vevők szinte mindegyike, 95 százaléka értett egyet vele, hogy az előre felcímkézett vagy szintetikus adatok kulcsfontosságúvá válnak az inkluzív adatkészletek létrehozásához, az érintettek nagyjából 90 százaléka pedig arról is beszámolt, hogy legalább negyedévente újra kell tanítania a modelleket. A cégek egyébként 88 százalékban támaszkodnak külső adatszolgáltatókra, de 83 százalékban egy olyan külső partnert tartanának ideálisnak, akire a data sourcing folyamatában egyetlen forrásként támaszkodhat a mesterséges intelligencia életciklusának minden szakaszában, biztosítva az adatok egyenletes minőségét.
Érdekes, hogy a döntéshozók bizonytalannak tűnnek abban a kérdésben, hogy szervezetük pontosan hol is tart a mesterséges intelligencia adaptációjában: 49 százalékuk úgy gondolja, hogy megelőzi a riválisait, míg ugyanekkora részük, másik 49 százalékuk úgy látja, hogy partiban van velük. A saját előnyükről nyilatkozók aránya látványosan csökkent az elmúlt években, és az amerikaiakra jobban jellemző ez a meggyőződés, mint az európaiakra.
Részletek az Appen State of AI and Machine Learning riportjában »
Jön a Clico formabontó cloud meetupja, ahol eloszlatják a viharfelhőket
Merre mennek a bitek a felhőben, ledobja-e szemellenzőjét az IT-biztonságért felelős kolléga, ha felhőt lát, lesz-e két év múlva fejlesztés cloud nélkül? A Clico novemberben fesztelen szakmázásra hívja a szoftverfejlesztőket a müncheni sörkertek vibrálását idéző KEG sörművházba.
Miért ne becsüljük le a kisbetűs jelszavakat? 1. rész