Az ismert és engedélyezett, jól meghatározott céllal alkalmazott gyógyszerek időnként más tünetek vagy betegségek kezelésére is hatásosak lehetnek. Az ilyen felhasználásokra egy ideje már nem csak a gyakorlati tapasztalat és véletlen megfigyelések alapján derül fény, hanem kifejezetten erre a célra szolgáló kutatások is igyekeznek feltárni a hatóanyagoknak az eredetileg elképzelt alkalmazástól eltérő hasznosítását, megfelelő alapokra helyezve az adatelemzésre vagy akár heurisztikus módszerekre épülő vizsgálatokat.
A gyógyszer-áthelyezésnek vagy gyógyszer-repozíciónak is nevezett megközelítést ígéretes stratégiának tekintik a gyógyszeriparban, nem utolsósorban azért, mert a sikeres felfedezések nyomán gyorsabban, olcsóbban és kevesebb kockázattal állíthatók elő az új termékek az egyre nagyobb populációt érintő betegségekre is. Erre közismert példa a botox, amit kezdetben izomelváltozások miatti mozgászavarok esetében használtak, később azonban nagy karriert futott be az esztétikai sebészeti felhasználásban.
Kevésbé banális és nagyon is aktuális dolog a koronavírus-járvány, amelynek kirobbanása óta a szakemberek a COVID-19 fertőzések kapcsán kutatják a már meglévő szerek esetleges hasznosítását. Ennek érdekében a legkülönfélébb megközelítéseket alkalmazzák, amelyek között még a matematikai és a hálózatkutatásban alkalmazott módszerek is megjelennek, így az sem meglepő, hogy az extrém mennyiségű adat gyors és hatékony elemzésére képes gépi tanuló rendszerek is megjelentek a pályán.
Az Ohio State University munkatársai néhány nappal ezelőtt a Nature Machine Intelligence oldalán tették közzé friss eredmnyeiket egy olyan keretrendszer kidolgozásában, ami a valódi betegek kezelése során keletkező adattömeget az ennek megfelelő számítási teljesítménnyel kombinálja, hogy prognosztizálja a már ismert gyógyszerek várható hatásait az előre definiált eredménykészleteken – vagyis az összes olyan esetben, amikor meghatározhatók a betegségek egyes kimenetelei. Bár maga a tanulmány a koszorúér-betegségek esetében koncentrált a szívinfarktus és az agyvérzés megelőzésére több mint 1,2 millió szívbeteg biztosítási adatainak feldolgozásával, a kutatók szerint a keretrendszer annyira rugalmas, hogy az gyakorlatilag bármely más betegság esetén alkalmazható a gyógyszer-repozíció kutatásában.
Sohasem próbált megoldásokat javasolnak
Azt maguk a tudósok is hangsúlyozzák, hogy a gépi tanuló algoritmus bevetése semmi esetre sem váltja ki a képzett orvosok közreműködését, akik meghozzák a gyógyszerekkel kapcsolatos döntéseket. A mesterséges intelligencia ezzel együtt hatékonyan alkalmazható a szerek adott betegeken való "tesztelésére", és felgyorsítja mind a velük kapcsolatos hipotézisek felállítását, mind a későbbi klinikai vizsgálatokat – ebben a speciális esetben például kilenc olyan gyógyszert is azonosított, amelytől terápiás előnyök remélhetők az érintett betegeknél, és ezek közül mindössze három volt tényleges használatban.
A véletlenszerű klinikai kísérleteken túl a gépi tanuló rendszer azt teszi lehetővé, hogy sok száz vagy ezer olyan meghatározó különbséget azonosítsanak a teljes populációra vetítve, ami befolyásolja az egyes gyógyszerek hatásait az emberi testben. Ezeket a változókat a mélytanuló algoritmus mind külön paraméterként kezeli, az információ pedig a valódi esetekből, sok millió páciens vizsgálatainak elektronikus dokumentációjából származik.
A modell működéséről részletesebben is beszámoló Tech Xplore a kutatásban résztvevő egyik professzort idézi, aki szerint csak a mesterséges intelligencia képes ekkora adatmennyiség és ennyi változó együttes kezelésére. Ezzel összefüggésben az Ohio State University fejlesztése lenne a legelső olyan mélytanuló algoritmus, ami ezen a területen valódi adatokat és ilyen sokféle változót használva emulálja a klinikai vizsgálatokat, az életkortól, a nemtől vagy a rassztól egészen az egyes betegségek súlyosságáig, a kísérőbetegségek jelenlétéig, az alkalmazott kezelésekig vagy akár csak a potenciális zavaró faktorokig.
Az új rendszer mindezek alapján nem arra keresi a választ, hogy ez vagy az a gyógyszer hatékonyabb az adott betegséggel szemben, hanem már a gyakorlati alkalmazást megelőzően következtet rá, hogy várhatóan melyik terápia lesz a leghatásosabb. A fenti alapesetnél maradva, a mesterséges intelligencia egy cukorbetegség és egy depresszió elleni szert is megjelölt, mint ami a modellezett populáció esetében eredményesen csökkentheti a szívinfarktus vagy a stroke esélyeit, utóbb pedig kiderült, hogy ezeket a gyógyszereket máshol már a valóságban is ugyanilyen céllal tesztelik.
Nyílt forráskód: valóban ingyenes, de használatának szigorú szabályai vannak