Egy új eljárás úgy javítja fel a kis felbontású, rossz minőségű arcképeket, ahogy eddig csak a tévében láthattuk. Az eredmény sosem teljesen pontos, de nem is nagyon lő mellé.

Az újkori filmek és sorozatok egyik legbénább technológiai vonatkozású ferdítése, amikor a hi-tech nyomozók kis méretű, alacsony felbontású felvételeket nagyítgatnak több száz- vagy ezerszeres méretre, és elolvassák az eredetileg ötször három képpontból álló figurák gallérján a mosoda pontos címét. Bár a valóságban nagy távolságból is megdöbbentően részletes fotókat lehet készíteni, és a tömörítés miatt lerontott videókat is meg lehet nézni eredeti felbontásban, egy eleve rossz minőségű képet nem lehet ilyen mértékben feljavítani. Legalábbis nem úgy, hogy releváns információt lehessen kinyerni belőle.

Az észak-karolinai Duke University kutatói nemrég egy olyan megoldással álltak elő, amely ha nem is produkálja a tévében látható trükköket, egy érdekes megközelítést alkalmaz a pixeles fotók, egész pontosan emberi arcok feldolgozására. A mintavételezési frekvenciájának utólagos megnövelését (upsampling) segítő MI-algoritmus, a PULSE (Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models) fotorealisztikus portrékat készít az eredeti mintákból, akár hatvannégyszeresére növelve azok felbontását. Ez azt jelenti, hogy egy 16×16 képpont méretű ikonból 1024×1024 pixeles, részletes arckép lesz.

Csak tippelget, de azt nagyon ügyesen teszi

A PULSE természetesen nem a lehetetlenre vállalkozik, vagyis nem olyan információt tesz láthatóvá, ami nincs is meg a forrásokban. Ehelyett megfordítja a dolog logikáját, és olyan képeket próbál generálni, amelyeket aztán az eredeti szintjére "visszarontva" a mintául szolgáló felvételeket minél jobban megközelítő eredményt kap. Ezáltal nem az eredeti arcokat varázsolja elő, hanem egy becslést ad, hogy azok nagy valószínűséggel milyenek lehettek – a becslései viszont elég pontosak ahhoz, hogy a technológia orvosi diagnosztikától a mikroszkópián át a műholdképekig egy nagy csomó képalkotó alkalmazásban felhasználható legyen.
 

forrás: Robin A. Smith, Duke University


A mesterséges intelligencia ebben az esetben is a GAN (generative adversarial networks) néven hivatkozott gépi tanuló technikát alkalmazza, amivel tulajdonképpen a két neurális hálózat közös működésére épülő rendszereket szokták jelölni. Ezek közül az egyik hálózat mindig a generátor (valamilyen információ létrehozója), a másik pedig a diszkriminátor (az információ értékelője). Utóbbi azt próbálja meghatározni, hogy a valódinak meghatározott minták hogyan viszonyulnak a másik hálózat által előállított mintákhoz, a visszacsatolás révén pedig az előbbi hálózat folyamatosan tanul, és egyre jobb eredményekre lesz képes.

Esetünkben az egyik hálózat elkezdi gyártani az eredeti minta alapján generált arcképeket, a másik pedig azt ellenőrzi, hogy az eredmények megfelelnek-e a szükséges paramétereknek. Ahogy az alábbi, a PULSE fejlesztőit ábrázoló demóból is jól látható, a rendszer nem képes (nem is lehet képes) visszaadni mindazt az információt, ami a képek minőségromlása során elveszett, ugyanakkor nagyon jól eltalálja, hogy eredetileg miről lehetett szó. A kutatók 40 emberi felhasználót is megszondáztak, hogy értékeljék a PULSE és öt másik scaling alkamazás által generált 1440 arcképet, és állításuk szerint a PULSE alkotásai majdnem olyan jól teljesítettek, mint az alanyokról készült eredeti, nagy felbontású fotók.

 

forrás: Robin A. Smith, Duke University

Cloud & big data

A kisebb hazai gyártóvállalatok elengedhetetlennek tartják a digitalizációt

Egy friss kutatás szerint az üzleti siker és a technológiai fejlődés csereszabatos kifejezésként élnek a kisebb gyártó vállalkozásokat irányító vezetők fejében.
 
Hirdetés

Így újult meg Magyarország leggyorsabb mobilhálózata

Közel 100 milliárd forintos beruházással, a rádiós és maghálózat teljes modernizációjával zárult le a Yettel történetének egyik legnagyobb műszaki fejlesztése.

A kompromittált rendszerek, a dark weben felbukkanó ügyféladatok vagy a zsarolóvírus-kampányok következményei már a vezérigazgatói és pénzügyi igazgatói irodában csapódnak le – jogi, reputációs és üzleti szinten is. Lehet és kell is védekezni ellene.
Amióta a VMware a Broadcom tulajdonába került, sebesen követik egymást a szoftvercégnél a stratégiai jelentőségű változások. Mi vár az ügyfelekre? Vincze-Berecz Tibor szoftverlicenc-szakértő (IPR-Insights) írása.

Nyílt forráskód: valóban ingyenes, de használatának szigorú szabályai vannak

Különösen az early adopter vállalatoknak lehet hasznos. De különbözik ez bármiben az amúgy is megkerülhetetlen tervezéstől és pilottól?

Sok hazai cégnek kell szorosra zárni a kiberkaput

Ön sem informatikus, de munkája során az információtechnológia is gyakran befolyásolja döntéseit? Ön is informatikus, de pénzügyi és gazdasági szempontból kell igazolnia a projektek hasznosságát? Mi közérthető módon, üzleti szemmel dolgozzuk fel az infokommunikációs híreket, trendeket, megoldásokat. A Bitport tizennegyedik éve közvetít sikeresen az informatikai piac és a technológiát hasznosító döntéshozók között.
© 2025 Bitport.hu Média Kft. Minden jog fenntartva.