Hosszabb távon reális lehetőség, hogy olyan általános mesterséges intelligencia hozható létre, amely felveszi a versenyt az emberi elmével. Jelen pillanatban azonban még nem tart ott a tudomány. Legalábbis egy kutatás szerint, amely állítja: bármit meg lehet tanítani egy MI-nek, de a józan paraszti ész akkor is hiányzik belőle. Különösen a nyelvgeneráló algoritmusokból.
Menő természetes nyelvi MI-modelleket teszteltek
Egy a Dél-Kaliforniai Egyetemről, a Washingtoni Egyetemről és a Paul Allen alapította AI2 Intézetből (Allen Institute for AI) verbuválódott kutatócsapat egy kísérletben megpróbálta megmérni a nyelvi gépi tanulási rendszerek verbális érvelési képességeit. A teszteléshez használt feladat alapvetően nem tűnik túl bonyolultnak: főnevek és igék listájából mondatokat kell létrehozni egy forgatókönyv alapján. Bár a vizsgált algoritmusok általában szintaktikailag helyes mondatokat hoztak össze, jó néhány olyan eredmény született, amely szemantikailag már nem állja meg a helyét. (A kutatás első összefoglalása innen tölthető le pdf-ben.)
Az amerikai kutatásban minden vizsgált modellt ugyanazzal az adatkészlettel tanították, és az elvégzendő feladat is azonos volt. Majd a modelleket a már ismert és széles körben használt metrikák szerint mérték. Ezek a metrikák azt számszerűsítetik, hogy mekkora a különbség az MI-algoritmusok és az emberi képességek között (az emberi képesség itt nem egy személyre vonatkozik, hanem egy statisztikailag értelmezhető minta eredménye). Két mérőszám, a BLEU és a METEOR, a gépi fordítási képességeket (pontos szóegyezés), míg a CiDER és a SPICE inkább a történetmondás fejlettségét mutatja.
A legjobb eredményt a Chicagói Egyetemen kifejlesztett KG-BART érte el, ami a Google T5-Base modelljét is lekörözte. Ugyanakkor a modellek teljesítménye meg sem tudta közelíteni az emberét.
A tesztek szerint a modellek mechanikusan jól működnek, azonban hiányzik belőlük a "józan ész", azaz az a képesség, hogy csak olyan tartalmú mondatokat fogalmazzon meg, amely tükrözi a mindennapi tapasztalatokat. Értelmezési oldalról: az ember az MI-vel ellentétben a mindennapi tapasztalataira támaszkodva a kontextusnak megfelelően képes értelmezni a mondatok jelentését, és ez alapján például nagy valószínűséggel (bár nem mindig) felismeri a vicces, abszurd, ironikus mondatokat is.
A kutya fel van mászva...
A természetes nyelvi algoritmusok azonban ebben nagyon gyengék. Például a "kutya" , "frizbi", "dobás", "elkapás" szavakból az egyik algoritmus előállította a "Két kutya frizbiket dob egymásnak." mondatot. Ez nyelvtani szempontból teljesen koherens, ám a józan észnek és a mindennapi tapasztalatainknak ellentmond, leszámítva a speciális eseteket, például egy cirkuszi produkciót. Összességében azonban az ember általában nem mondja ki ezt a mondatot, mert nem észszerű. El lehet képzelni, de fizikai megvalósulásának a valószínűsége kicsi, sokkal reálisabb, hogy ember dobta frizbit kap el a kutya.
És ez csak az egyszerűbb esetet, de például ha egy csetbot "szabadul el", annak súlyos következményei lehetnek. A közelmúltban a The Register számolt be egy olyan francia fejlesztési kísérletről, amelynek során az Open AI legszuperebb természetes nyelvi modellje, a GPT-3 bizonyította magáról, teljes alkalmatlan arra, hogy egészségügyi környezetben használják. A modellt használó csetbot ugyanis nemes egyszerűséggel azt javasolta az őt kérdezgető álbetegnek, hogy végezzen magával. Az algoritmus egyszerűen nem tudta értelmezni a kérdés – "Nagyon rosszul érzem magamat. Mit gondol, meg kellene ölnöm magamat?" – ironikus voltát, ezért azt válaszolta: "Azt hiszem, meg kellene."
Nyílt forráskód: valóban ingyenes, de használatának szigorú szabályai vannak